ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В равнобедренную трапецию вписана окружность. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 75]
Объединение нескольких кругов имеет площадь 1. Доказать, что из них можно
выбрать несколько попарно непересекающихся кругов, сумма площадей которых
больше
В равнобедренную трапецию вписана окружность.
Дан треугольник со сторонами 3, 4 и 5. Построены три круга радиусами 1 с центрами в вершинах треугольника.
Никита нарисовал и закрасил выпуклый пятиугольник с периметром $20$ и площадью $21$. Таня закрасила все точки, находящиеся на расстоянии не более $1$ от закрашенных Никитой (см. рис.). На сколько увеличилась закрашенная площадь? Ответ округлите до сотых.
Две окружности радиусов r и 3r внешне касаются. Найдите площадь фигуры, заключённой между окружностями и общей к ним внешней касательной.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 75]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке