ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

К окружности, вписанной в равнобедренный треугольник с основанием 12 и высотой 8, проведена касательная, параллельная основанию.
Найдите длину отрезка этой касательной, заключённого между сторонами треугольника.

   Решение

Задачи

Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 603]      



Задача 52451

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через высоту и основание) ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

Окружность касается прямых AB и BC соответственно в точках D и E. Точка A лежит между точками B и D, а точка C – между точками B и E.
Найдите площадь треугольника ABC, если  AB = 13,  AC = 1,  а точки A, D, E и C лежат на одной окружности.

Прислать комментарий     Решение

Задача 52461

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Отношение, в котором биссектриса делит сторону ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике ABC проведены биссектрисы AD, BE, CF.
Найдите BC, если известно, что  AB = AC = 1,  а вершина A лежит на окружности, проходящей через точки D, E и F.

Прислать комментарий     Решение

Задача 52579

Темы:   [ Касающиеся окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Через точку касания двух окружностей проведена секущая. Докажите, что радиусы и касательные, проведённые через концы образовавшихся хорд, параллельны.

Прислать комментарий     Решение

Задача 52687

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Отношения линейных элементов подобных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

К окружности, вписанной в равнобедренный треугольник с основанием 12 и высотой 8, проведена касательная, параллельная основанию.
Найдите длину отрезка этой касательной, заключённого между сторонами треугольника.

Прислать комментарий     Решение

Задача 52925

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD с основаниями AD и BC боковая сторона AB равна 2. Биссектриса угла BAD пересекает прямую BC в точке E. В треугольник ABE вписана окружность, касающаяся стороны AB в точке M и стороны BE в точке H,  MH = 1.  Найдите угол BAD.

Прислать комментарий     Решение

Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .