Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В треугольнике даны два угла β и γ и радиус R описанной окружности. Найдите радиус вписанной окружности.

Вниз   Решение


В параллелограмме KLMN сторона KL равна 8. Окружность, касающаяся сторон NK и NM, проходит через точку L и пересекает стороны KL и ML в точках C и D соответственно. Известно, что KC : LC = 4 : 5 и LD : MD = 8 : 1. Найдите сторону KN.

ВверхВниз   Решение


Петров забронировал квартиру в доме-новостройке, в котором пять одинаковых подъездов. Изначально подъезды нумеровались слева направо, и квартира Петрова имела номер 636. Потом застройщик поменял нумерацию на противоположную (справа налево, см. рисунок). Тогда квартира Петрова стала иметь номер 242. Сколько квартир в доме? (Порядок нумерации квартир внутри подъезда не изменялся.)

ВверхВниз   Решение


Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?

ВверхВниз   Решение


Прямая OA касается окружности в точке A, а хорда BC параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Докажите, что прямая KL делит отрезок OA пополам.

ВверхВниз   Решение


а) Дан выпуклый четырёхугольник ABCD. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что  r4 > 2r3?

б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что  r2 > 2r1?

ВверхВниз   Решение


На сторонах BC и CD квадрата ABCD отмечены точки M и N соответственно так, что лучи AM и AN делят угол BAD на три равные части. ME – высота треугольника MAN. Найдите угол EDN.

ВверхВниз   Решение


В равнобедренный треугольник ABC вписан ромб DECF так, что вершина E лежит на стороне BC, вершина F – на стороне AC и вершина D – на стороне AB. Найдите длину стороны ромба, если  AB = BC = 12,  AC = 6.

ВверхВниз   Решение


Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу описанной окружности равно h. Найдите углы треугольника.

Вверх   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 213]      



Задача 65652

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Прямая Эйлера и окружность девяти точек ]
[ Ортоцентр и ортотреугольник ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 5
Классы: 9,10,11

Автор: Креков Д.

Дан остроугольный треугольник ABC. Пусть A' – точка, симметричная A относительно BC, OA – центр окружности, проходящей через A и середины отрезков A'B и A'C. Точки OB и OC определяются аналогично. Найдите отношение радиусов описанных окружностей треугольников ABC и OAOBOC.

Прислать комментарий     Решение

Задача 52919

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу описанной окружности равно h. Найдите углы треугольника.

Прислать комментарий     Решение


Задача 52920

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

В треугольнике ABC точка P — центр вписанной окружности, а точка Q — центр окружности, описанной около треугольника ABC. Прямая PQ перпендикулярна биссектрисе AP треугольника ABC. Известно, что величина угла PAQ равна $ \alpha$. Найдите углы треугольника.

Прислать комментарий     Решение


Задача 52921

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу вписанной окружности равно k. Найдите углы треугольника.

Прислать комментарий     Решение


Задача 52922

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

В треугольнике PQR точка A — центр вписанной окружности, а точка B — центр окружности, описанной около треугольника PQR. Прямая AB перпендикулярна биссектрисе QA треугольника PQR. Известно, что угол ABQ равен $ \beta$. Найдите углы треугольника PQR.

Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 213]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .