ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Частные случаи треугольников
>>
Прямоугольные треугольники
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке K . Найдите площадь треугольника CKB , если катет BC равен a и катета AC равен b . Решение |
Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 1354]
Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD.
В равнобедренном треугольнике центр вписанной окружности делит высоту в отношении 17 : 15. Основание равно 60. Найдите радиус этой окружности.
Радиус окружности равен R. Найдите хорду, проведённую из конца данного диаметра через середину перпендикулярного к нему радиуса.
В прямоугольном треугольнике ABC AC = 16, BC = 12. Из центра B радиусом BC описана окружность и к ней проведена касательная, параллельная гипотенузе AB (касательная и треугольник лежат по разные стороны от гипотенузы). Катет BC продолжен до пересечения с проведённой касательной. Определите, на сколько продолжен катет.
Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 1354] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|