ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В равнобедренную трапецию, основания которой равны a и b  (a > b),  можно вписать окружность.
Найдите расстояние между центрами вписанной и описанной около этой трапеции окружностей.

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 512]      



Задача 52666

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Около окружности описана трапеция ABCD, боковая сторона AB перпендикулярна основаниям, M – точка пересечения диагоналей трапеции. Площадь треугольника CMD равна S. Найдите радиус окружности.

Прислать комментарий     Решение

Задача 52903

Темы:   [ Вспомогательная окружность ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9

Автор: Тоом А.Л.

Точка K лежит на стороне BC треугольника ABC.
Докажите, что соотношение  AK² = AB·AC – KB·KC  выполнено тогда и только тогда, когда  AB = AC  или  ∠BAK = ∠CAK.

Прислать комментарий     Решение

Задача 53040

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В равнобедренную трапецию, основания которой равны a и b  (a > b),  можно вписать окружность.
Найдите расстояние между центрами вписанной и описанной около этой трапеции окружностей.

Прислать комментарий     Решение


Задача 53055

Темы:   [ Вспомогательная окружность ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол C – тупой, D – точка пересечения прямой DB, перпендикулярной к AB, и прямой DC, перпендикулярной к AC. Высота треугольника ADC, проведённая из вершины C, пересекает AB в точке M. Известно, что  AM = a,  MB = b.  Найдите AC.

Прислать комментарий     Решение

Задача 53181

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Центр окружности радиуса 6, касающейся сторон AB, BC и CD равнобедренной трапеции ABCD, лежит на её большем основании AD. Основание BC равно 4. Найдите расстояние между точками, в которых окружность касается боковых сторон AB и CD этой трапеции.

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .