Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 517]
|
|
Сложность: 3+ Классы: 8,9,10
|
В выпуклом пятиугольнике $ABCDE$ равны углы $CAB$, $BCA$, $ECD$, $DEC$ и $AEC$. Докажите, что середина $BD$ лежит на $CE$.
|
|
Сложность: 3+ Классы: 8,9,10
|
На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$.
У равносторонних треугольников $ABC$ и $CDE$ вершина $C$ лежит на отрезке $AE$, вершины $B$ и $D$ по одну сторону от этого отрезка. Описанные около треугольников окружности с центрами $O_1$ и $O_2$ повторно пересекаются в точке $F$. Прямая $O_1O_2$ пересекает $AD$ в точке $K$. Докажите, что $AK=BF$.
|
|
Сложность: 3+ Классы: 9,10,11
|
Высоты $AH$, $CH$ остроугольного треугольника $ABC$ пересекают внутреннюю биссектрису угла $B$ в точках $L_1$, $P_1$, а внешнюю в точках $L_2$, $P_2$. Докажите, что ортоцентры треугольников $HL_1P_1$, $HL_2P_2$ и вершина $B$ лежат на одной прямой.
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 517]