Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Диагональ BD трапеции ABCD равна m, а боковая сторона AD равна n. Найдите основание CD, если известно, что основание, диагональ и боковая сторона трапеции, выходящие из вершины C, равны между собой.

Вниз   Решение


Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов.

ВверхВниз   Решение


Сколько различных целочисленных решений имеет неравенство  |x| + |y| < 100?

ВверхВниз   Решение


В треугольнике ABC перпендикуляр, проходящий через середину стороны AC, пересекает сторону BC в точке M, а перпендикуляр, проходящий через сторону BC пересекает сторону AC в точке N. Прямая MN перпендикулярна AB и MN = $ {\frac{AB}{\sqrt{3}}}$. Найдите углы треугольника ABC.

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 306]      



Задача 53124

Темы:   [ Теорема синусов ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
Сложность: 4+
Классы: 8,9

В треугольнике ABC перпендикуляр, проходящий через середину стороны AC, пересекает сторону BC в точке M, а перпендикуляр, проходящий через сторону BC пересекает сторону AC в точке N. Прямая MN перпендикулярна AB и MN = $ {\frac{AB}{\sqrt{3}}}$. Найдите углы треугольника ABC.

Прислать комментарий     Решение


Задача 115448

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 5-
Классы: 9,10,11




Четырёхугольник ABCD вписан в окружность с диаметром AD ; O  — точка пересечения его диагоналей AC и BD является центром другой окружности, касающейся стороны BC . Из вершин B и С проведены касательные ко второй окружности, пересекающиеся в точке T . Докажите, что точка T лежит на отрезке AD .
Прислать комментарий     Решение

Задача 115455

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Отношение, в котором биссектриса делит сторону ]
[ Свойства биссектрис, конкуррентность ]
[ Теорема синусов ]
[ Гомотетия помогает решить задачу ]
Сложность: 5-
Классы: 9,10

В треугольнике АВС : АС = . Докажите, что центры вписанной и описанной окружностей треугольника АВС , середины сторон АВ и ВС и вершина В лежат на одной окружности.
Прислать комментарий     Решение


Задача 115974

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Касающиеся окружности ]
Сложность: 2+
Классы: 7,8,9

Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.

Прислать комментарий     Решение

Задача 52357

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Признаки подобия ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что:
  а) треугольник AA1C подобен треугольнику BB1C;
  б) треугольник ABC подобен треугольнику A1B1C.
  в) Найдите коэффициент подобия треугольников A1B1C и ABC, если  ∠C = γ.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 306]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .