ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Город считается миллионером, если в нем живет более миллиона человек. Вероятность какого события больше: Возьмите статистику численности городского населения России с сайта http://www.perepis2002.ru/ct/doc/1_TOM_01_05.xls. Проверьте, справедлив ли для России ваш вывод, сделанный ранее. Для этого подсчитайте вероятность того, что наугад выбранный городской житель живёт в городе-миллионере, и вероятность того, наугад выбранный город – миллионер, и сравните их. Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой. На каждой из сторон треугольника ABC построено по прямоугольнику так, что они попарно касаются вершинами (см. рисунок). Докажите, что первые три цифры частного Найдите ближайшее целое число к числу x, если x = В круг радиуса 1 вписан пятиугольник. Докажите, что сумма длин его сторон и диагоналей меньше 17. Каждая из 9 прямых разбивает квадрат на два четырхугольника, площади которых относятся как 2:3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку. Чётными или нечётными будут сумма и произведение: На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что
KL || MN и |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]
Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что
KL || MN и
Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.
На высоте BD треугольника ABC взята такая точка E, что ∠AEC = 90°. Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.
Бильярдный стол имеет вид прямоугольника 2×1, в углах и на серединах больших сторон которого расположены лузы. Какое наименьшее число шаров надо расположить внутри прямоугольника, чтобы каждая луза находилась на одной линии с некоторыми двумя шарами?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке