Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

  а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части.
  б) Решите общую задачу: при каких a и b можно разделить пополам  a + b  литров молока, пользуясь лишь сосудами в a литров, b литров и  a + b  литров?
За одно переливание из одного сосуда в другой можно вылить всё, что там есть, или долить второй сосуд до верха.

Вниз   Решение


На боковых сторонах AB и BC равнобедренного треугольника ABC взяты соответственно точки M и N так, что  BM = CN.
Докажите, что середина отрезка MN лежит на средней линии треугольника BC, параллельной его основанию.

ВверхВниз   Решение


Автор: Мухин Д.Г.

Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что  2MN < AB.

ВверхВниз   Решение


a, b, c – целые числа; a и b отличны от нуля.
Докажите, что уравнение  ax + by = c  имеет решения в целых числах тогда и только тогда, когда c делится на  d = НОД(a, b).

ВверхВниз   Решение


Докажите равенство  

ВверхВниз   Решение


Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.

ВверхВниз   Решение


Дана равнобедренная трапеция ABCD. Известно, что  AD = 10,  BC = 2,  AB = CD = 5.  Биссектриса угла BAD пересекает продолжение основания BC
в точке K. Найдите биссектрису угла ABK в треугольнике ABK.

ВверхВниз   Решение


Какое наименьшее число соединений требуется для организации проводной сети связи из 10 узлов, чтобы при выходе из строя любых двух узлов связи сохранялась возможность передачи информации между любыми двумя оставшимися (хотя бы по цепочке через другие узлы)?

ВверхВниз   Решение


Сторона ромба ABCD равна 5. В этот ромб вписана окружность радиуса 2,4.
Найдите расстояние между точками, в которых эта окружность касается сторон AB и BC, если диагональ AC меньше диагонали BD.

ВверхВниз   Решение


Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т.д.).
Докажите, что центры обоих параллелограммов совпадают.

Вверх   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 352]      



Задача 116345

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9,10

Две окружности проходят через вершину угла и точку его биссектрисы. Докажите, что отрезки, высекаемые ими на сторонах угла, равны.

Прислать комментарий     Решение

Задача 32892

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC, где угол B прямой, а угол A меньше угла C, проведена медиана BM. На стороне AC взята точка L так, что  ∠ABM = ∠MBL.  Описанная окружность треугольника BML пересекает сторону AB в точке N. Докажите, что  AN = BL.

Прислать комментарий     Решение

Задача 53344

Темы:   [ Удвоение медианы ]
[ Вспомогательные равные треугольники ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9

В выпуклом пятиугольнике ABCDE  AE = AD,  AC = AB  и  ∠DAC = ∠AEB + ∠ABE.
Докажите, что сторона CD в два раза больше медианы AK треугольника ABE.

Прислать комментарий     Решение

Задача 53361

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т.д.).
Докажите, что центры обоих параллелограммов совпадают.

Прислать комментарий     Решение

Задача 53370

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

От квадрата отрезан прямоугольный треугольник, сумма катетов которого равна стороне квадрата.
Докажите, что сумма трёх углов, под которыми видна из трёх оставшихся вершин его гипотенуза, равна 90°.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .