ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стороне CB треугольника ABC взята точка M, а на стороне CA – точка P. Известно, что  CP : CA = 2CM : CB.  Через точку M проведена прямая, параллельная CA, а через P – прямая параллельная AB. Докажите, что построенные прямые пересекаются на медиане CN.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200]      



Задача 115931

Тема:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

На медиане AM треугольника ABC взята точка K, причём  AK : KM = 1 : 3.
Найдите отношение, в котором прямая, проходящая через точку K параллельно стороне AC, делит сторону BC.

Прислать комментарий     Решение

Задача 116489

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 7,8,9

На сторонах AC и BC треугольника ABC выбраны точки M и N соответственно так, что  MN || AB.  На стороне AC отмечена точка K так, что  CK = AM.  Отрезки AN и BK пересекаются в точке F. Докажите, что площади треугольника ABF и четырёхугольника KFNC равны.

Прислать комментарий     Решение

Задача 37001

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теоремы Чевы и Менелая ]
[ Гомотетия помогает решить задачу ]
[ ГМТ - прямая или отрезок ]
Сложность: 3+
Классы: 9,10

Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении.

Прислать комментарий     Решение

Задача 53580

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На стороне CB треугольника ABC взята точка M, а на стороне CA – точка P. Известно, что  CP : CA = 2CM : CB.  Через точку M проведена прямая, параллельная CA, а через P – прямая параллельная AB. Докажите, что построенные прямые пересекаются на медиане CN.

Прислать комментарий     Решение

Задача 53644

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Через точку на стороне четырёхугольника проведена прямая, параллельная диагонали, до пересечения с соседней стороной четырёхугольника. Через полученную точку проведена прямая, параллельная другой диагонали, и т.д. Докажите, что пятая точка, полученная таким способом, совпадет с исходной.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .