ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Отрезки, соединяющие основания высот остроугольного треугольника, равны 8, 15 и 17. Найдите площадь треугольника.

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 460]      



Задача 102390

Темы:   [ Отношения площадей ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В трапеции CDEF ( DE$ \Vert$CF) известно, что CF = 2 . DE. На сторонах CD и EF взяты соответственно точки K и L, CK : KD = 3 : 2, EL : LF = 5 : 3. В каком отношении прямая KL делит площадь трапеции?.

Прислать комментарий     Решение


Задача 102458

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей подобных треугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Точка F лежит на продолжении стороны BC параллелограмма ABCD за точку C. Отрезок AF пересекает диагональ BD в точке E, а сторону CD – в точке G. Известно, что  AE = 2  и  GF = 3.  Найдите отношение площадей треугольников BAE и EDG.

Прислать комментарий     Решение

Задача 34905

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Отношения площадей (прочее) ]
[ Площадь трапеции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Каждая из 9 прямых разбивает квадрат на два четырхугольника, площади которых относятся как 2:3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
Прислать комментарий     Решение


Задача 52429

Темы:   [ Диаметр, основные свойства ]
[ Отношения площадей подобных фигур ]
Сложность: 4-
Классы: 8,9

На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая отрезок AB в точке D. Найдите отношение площадей треугольников ABC и BCD, если известно, что AC = 15, BC = 20 и $ \angle$ABC = $ \angle$ACD.

Прислать комментарий     Решение


Задача 53700

Темы:   [ Ортоцентр и ортотреугольник ]
[ Отношения площадей подобных фигур ]
Сложность: 4-
Классы: 8,9

Отрезки, соединяющие основания высот остроугольного треугольника, равны 8, 15 и 17. Найдите площадь треугольника.

Прислать комментарий     Решение


Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .