ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.

Вниз   Решение


На стороне AB треугольника ABC взята точка D, а на стороне A1B1 треугольника A1B1C1 взята точка D1. Известно, что треугольники ADC и A1D1C1 равны и отрезки DB и D1B1 равны. Докажите равенство треугольников ABC и A1B1C1.

ВверхВниз   Решение


Верно ли, что два треугольника ABC и A'B'C' равны, если  AB =A'B',  BC = B'C', и  ∠A = ∠A'?

ВверхВниз   Решение


В окружность с центром в точке O вписан треугольник EGF, у которого угол $ \angle$EFG -- тупой. Вне окружности находится такая точка L, что $ \angle$LEF = $ \angle$FEG, $ \angle$LGF = $ \angle$FGE. Найдите радиус описанной около треугольника ELG окружности, если площадь треугольника EGO равна 81$ \sqrt{3}$ и $ \angle$OEG = 60o.

ВверхВниз   Решение


В равенстве  (ayb)c = – 64y6  замените a, b и c целыми числами, отличными от 1, так, чтобы получилось тождество.

ВверхВниз   Решение


Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360o/n относительно некоторой точки.

ВверхВниз   Решение


Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.

ВверхВниз   Решение


В треугольнике ABC на основании AC взяты точки P и Q так, что  AP < AQ.  Прямые BP и BQ делят медиану AM на три равные части. Известно, что  PQ = 3.
Найдите AC.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 122]      



Задача 102526

Темы:   [ Две пары подобных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

В прямоугольнике ABCD на сторонах AB и AD выбраны соответственно точки E и F так, что  AE : EB = 3 : 1,  AF : FD = 1 : 2.
Найдите отношение  EO : OD,  где O – точка пересечения отрезков DE и CF.

Прислать комментарий     Решение

Задача 108503

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Точки M и N находятся на боковых сторонах AB и CD трапеции ABCD, прямая MN параллельна AD, а отрезок MN делится диагоналями трапеции на три равные части. Найдите длину отрезка MN, если  AD = a,  BC = b,  а точка пересечения диагоналей трапеции лежит внутри четырёхугольника MBCN.

Прислать комментарий     Решение

Задача 116218

Темы:   [ Две пары подобных треугольников ]
[ Вписанный угол равен половине центрального ]
[ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 9,10

В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что  ∠PKA = ∠QKD.

Прислать комментарий     Решение

Задача 102458

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей подобных треугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Точка F лежит на продолжении стороны BC параллелограмма ABCD за точку C. Отрезок AF пересекает диагональ BD в точке E, а сторону CD – в точке G. Известно, что  AE = 2  и  GF = 3.  Найдите отношение площадей треугольников BAE и EDG.

Прислать комментарий     Решение

Задача 53797

Темы:   [ Две пары подобных треугольников ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC на основании AC взяты точки P и Q так, что  AP < AQ.  Прямые BP и BQ делят медиану AM на три равные части. Известно, что  PQ = 3.
Найдите AC.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .