ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Площадь треугольника ABC равна  2,  сторона BC равна 1,  ∠BCA = 60°.  Точка D стороны AB удалена от точки B на 3, M – точка пересечения CD с медианой BE. Найдите отношение  BM : ME.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 207]      



Задача 115560

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD биссектрисы углов при стороне AD делят сторону BC точками M и N так, что  BM : MN = 1 : 5.  Найдите BC, если  AB = 3.

Прислать комментарий     Решение

Задача 115889

Темы:   [ Трапеции (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9,10,11

В трапеции ABCD боковая сторона AB равна меньшему основанию BC, а диагональ AC равна основанию AD. Прямая, проходящая через вершину B параллельно AC, пересекает прямую DC в точке M. Докажите, что AM – биссектриса угла BAC.

Прислать комментарий     Решение

Задача 116908

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3+
Классы: 8,9,10

Автор: Рожкова М.

Дан равнобедренный треугольник ABC, в котором  BC = aAB = AC = b.  На стороне AC во внешнюю сторону построен треугольник ADC, в котором
AD = DC = a.  Пусть CM и CN – биссектрисы в треугольниках ABC и ADC соответственно. Найдите радиус описанной окружности треугольника CMN.

Прислать комментарий     Решение

Задача 53797

Темы:   [ Две пары подобных треугольников ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC на основании AC взяты точки P и Q так, что  AP < AQ.  Прямые BP и BQ делят медиану AM на три равные части. Известно, что  PQ = 3.
Найдите AC.

Прислать комментарий     Решение

Задача 53838

Темы:   [ Две пары подобных треугольников ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Площадь треугольника ABC равна  2,  сторона BC равна 1,  ∠BCA = 60°.  Точка D стороны AB удалена от точки B на 3, M – точка пересечения CD с медианой BE. Найдите отношение  BM : ME.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .