Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 207]
Точка D лежит на стороне BC треугольника ABC, а точка O расположена на отрезке AD, причём AO : OD = 9 : 4. Прямая, проходящая через вершину B и точку O, пересекает сторону AC в точке E, причём BO : OE = 5 : 6. Найдите отношение, в котором точка E делит сторону AC.
Дана трапеция ABCD с основаниями AD и BC. Биссектрисы углов при вершинах A и B пересекаются в точке M, а биссектрисы углов при вершинах C и D – в точке N. Найдите MN, если известно, что AB = a, BC = b, CD = c и AD = d.
Одним прямолинейным разрезом отрежьте от треугольника трапецию, у которой меньшее основание было бы равно сумме боковых сторон.
Дан неравнобедренный треугольник ABC. Точка O – центр его описанной окружности, а точка K – центр описанной окружности ω треугольника BCO. Высота треугольника ABC, проведенная из точки A, пересекает окружность ω в точке P. Прямая PK пересекает описанную окружность треугольника ABC в точках E и F. Докажите, что один из отрезков EP и FP равен отрезку PA.
|
|
Сложность: 4- Классы: 8,9,10
|
Петя вырезал из бумаги прямоугольник, положил на него такой же прямоугольник и склеил их по периметру. В верхнем прямоугольнике он провёл диагональ, опустил на неё перпендикуляры из двух оставшихся вершин, разрезал верхний прямоугольник по этим линиям и отогнул полученные треугольники во внешнюю сторону, так что вместе с нижним прямоугольником они образовали прямоугольник.
Как по полученному прямоугольнику восстановить исходный с помощью циркуля и линейки?
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 207]