ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 – на другой. Докажите, что если  AB1 || BA1  и  AC1 || CA1,  то  BC1 || CB1.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 207]      



Задача 116356

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки подобия ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Центр масс ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 8,9,10

На сторонах BC, AC и AB треугольника ABC расположены точки A1, B1 и C1 соответственно, причём  BA1 : A1C = CB1 : B1A = AC1 : C1B = 1 : 3.  Найдите площадь треугольника, образованного пересечениями прямых AA1, BB1 и CC1, если известно, что площадь треугольника ABC равна 1.

Прислать комментарий     Решение

Задача 66383

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Осевая и скользящая симметрии (прочее) ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 7,8,9

Два квадрата и равнобедренный треугольник расположены так, как показано на рисунке (вершина K большого квадрата лежит на стороне треугольника). Докажите, что точки A, B и C лежат на одной прямой.

Прислать комментарий     Решение

Задача 53863

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 – на другой. Докажите, что если  AB1 || BA1  и  AC1 || CA1,  то  BC1 || CB1.

Прислать комментарий     Решение

Задача 66234

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Ортоцентр и ортотреугольник ]
[ Отношения линейных элементов подобных треугольников ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4-
Классы: 9,10

Высоты AA1, CC1 треугольника ABC пересекаются в точке H.  HA – точка симметричная H относительно A.  HAC1 пересекает прямую BC в точке C'; аналогично определяется точка A'. Докажите, что  A'C' || AC.

Прислать комментарий     Решение

Задача 108194

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательная окружность ]
[ Четыре точки, лежащие на одной окружности ]
[ Средняя линия треугольника ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Хорда CD окружности с центром O перпендикулярна её диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .