ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что расстояние от точки M(x0;y0) до прямой, заданной уравнением ax + by + c = 0, равно

$\displaystyle {\frac{\vert ax_{0}+ by_{0}+ c\vert}{\sqrt{a^{2}+ b^{2}}}}$.

Вниз   Решение


На доске была начерчена трапеция, в ней была проведена средняя линия EF и опущен перпендикуляр OK из точки O пересечения диагоналей на большее основание. Затем трапецию стерли. Как восстановить чертеж по сохранившимся отрезкам EF и OK?

Вверх   Решение

Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 487]      



Задача 55571

Темы:   [ Симметрия помогает решить задачу ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 8,9

На прозрачной бумаге нарисован треугольник. Без всяких инструментов постройте центр его описанной окружности.

Прислать комментарий     Решение


Задача 108574

Темы:   [ Ромбы. Признаки и свойства ]
[ Построения ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки впишите в данный треугольник ромб так, чтобы один из его углов совпал с углом треугольника.

Прислать комментарий     Решение


Задача 53774

Темы:   [ Трапеции (прочее) ]
[ Четырехугольники (построения) ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.

Прислать комментарий     Решение

Задача 53884

Темы:   [ Замечательное свойство трапеции ]
[ Четырехугольники (построения) ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

На доске была начерчена трапеция, в ней была проведена средняя линия EF и опущен перпендикуляр OK из точки O пересечения диагоналей на большее основание. Затем трапецию стерли. Как восстановить чертеж по сохранившимся отрезкам EF и OK?

Прислать комментарий     Решение

Задача 54595

Темы:   [ Касающиеся окружности ]
[ Построения ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 3+
Классы: 8,9

Даны три точки A, B, C. С помощью циркуля и линейки постройте три окружности, попарно касающиеся в этих точках.

Прислать комментарий     Решение

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 487]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .