ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что если
sin
то один из углов треугольника ABC равен
60o.
Пусть O — центр окружности, описанной около треугольника ABC ,
В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK. В прямоугольном треугольнике на гипотенузе AB от вершины A отложим отрезок AD, равный катету AC, а от вершины B - отрезок BE, равный катету BC. Докажите, что длина отрезка DE равна диаметру окружности, вписанной в треугольник ABC.
Даны положительные числа a, b, c, d, причем a>b>c>d. Докажите, что (a+b+c+d)2>a2+3b2+5c2+7d2. Через двор проходят четыре пересекающиеся тропинки (см. план). Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции. Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное. В четырёхугольнике длины всех сторон и диагоналей меньше 1 м. Доказать, что его можно поместить в круг радиуса 0,9 м.
AB и AC — равные хорды, MAN — касательная, угловая величина дуги BC, не содержащей точки A, равна 200o. Найдите углы MAB и NAC.
Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по одну сторону от прямой OA. Докажите, что угол CAD вдвое меньше угла AOD.
Соедините точки А и В (см. рисунок) ломаной из четырёх отрезков одинаковой длины так, чтобы выполнялись следующие условия: Расставьте в вершинах пятиугольника действительные числа так, чтобы сумма чисел на концах некоторой стороны была равна 1, на концах некоторой другой стороны была равна 2, ..., на концах последней стороны – равна 5.
Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что AM = AN. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 2966]
Какова угловая величина дуги, если радиус, проведённый в её конец, составляет с её хордой угол в 40°?
Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.
Проведены хорды AC и BD, пересекающиеся в точке M.
Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7. Хорды AD и BC продолжены до пересечения в точке M.
На катете AC прямоугольного треугольника ABC как на диаметре
построена окружность, пересекающая гипотенузу AB в точке K.
Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что AM = AN.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 2966]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке