Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 2966]
На окружности взяты точки A, B, C и D. Прямые AB
и CD пересекаются в точке M. Докажите, что
AC . AD/AM = BC . BD/BM.
В треугольнике ABC проведена высота AH; O — центр описанной окружности. Докажите, что
OAH = |
B -
C|.
Две окружности касаются в точке A. К ним
проведена общая (внешняя) касательная, касающаяся окружностей
в точках C и B. Докажите, что
CAB = 90o.
Две окружности S1 и S2 с центрами O1 и O2
касаются в точке A. Через точку A проведена прямая,
пересекающая S1 в точке A1 и S2 в точке A2. Докажите,
что
O1A1 || O2A2.
Из точки A проведены касательные AB и AC
к окружности с центром O. Докажите, что если из точки M
отрезок AO виден под углом
90o, то отрезки OB и OC
видны из нее под равными углами.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 2966]