ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны точки A и B. С центром в точке B проводятся окружности радиусом, не превосходящим AB, а через точку A — касательные к ним. Найдите геометрическое место точек касания. Решение |
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 769]
В равнобедренный треугольник ABC (AC = BC) вписана окружность радиуса 3. Прямая l касается этой окружности и параллельна прямой AC. Расстояние от точки B до прямой l равно 3. Найдите расстояние между точками, в которых данная окружность касается сторон AC и BC.
В треугольник вписана окружность радиуса r. Касательные к этой окружности, параллельные сторонам треугольника, отсекают от него три маленьких треугольника. Пусть r1, r2, r3 – радиусы вписанных в эти треугольники окружностей. Докажите, что r1 + r2 + r3 = r.
Биссектриса угла C треугольника ABC делит сторону AB на отрезки, равные a и b (a > b). Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Даны точки A и B. С центром в точке B проводятся окружности радиусом, не превосходящим AB, а через точку A — касательные к ним. Найдите геометрическое место точек касания.
Прямая касается двух окружностей в точках A и B. Линия центров
пересекает первую окружность в точках E и C, а вторую – в точках D и F.
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|