ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Основание D высоты AD треугольника ABC лежит на стороне BC, причём $ \angle$BAD > $ \angle$CAD. Что больше, AB или AC?

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 373]      



Задача 35243

Темы:   [ Длины сторон (неравенства) ]
[ Окружности (прочее) ]
[ Окружности (построения) ]
Сложность: 3+
Классы: 7,8,9

Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге.
Прислать комментарий     Решение


Задача 35382

Темы:   [ Неравенства для остроугольных треугольников ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 9,10

Стороны треугольника равны a, b, c. Известно, что a3=b3+c3. Докажите, что этот треугольник остроугольный.
Прислать комментарий     Решение


Задача 52805

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Докажите, что из всех хорд, проходящих через точку A, взятую внутри круга и отличную от центра, наименьшей будет та, которая перпендикулярна диаметру, проходящему через точку A.

Прислать комментарий     Решение


Задача 52809

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на наибольшей стороне BC, равной b, выбирается точка M. Найдите наименьшее расстояние между центрами окружностей, описанных около треугольников BAM и ACM.

Прислать комментарий     Решение


Задача 54023

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 3+
Классы: 8,9

Основание D высоты AD треугольника ABC лежит на стороне BC, причём $ \angle$BAD > $ \angle$CAD. Что больше, AB или AC?

Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 373]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .