Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

На сторонах треугольника ABC вне его построены правильные треугольники ABC1, BCA1 и CAB1. Доказать, что $ \overrightarrow{AA_1}$ + $ \overrightarrow{BB_1}$ + $ \overrightarrow{CC_1}$ = $ \overrightarrow{0}$.

Вниз   Решение


В треугольнике ABC даны три стороны:  AB = 26,  BC = 30  и  AC = 28.  Найдите часть площади этого треугольника, заключённую между высотой и биссектрисой, проведёнными из вершины B.

ВверхВниз   Решение


Выведите формулу для суммы 13 + 23 + 33 +...+ n3.

ВверхВниз   Решение


У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если а) N = 201; б) N = 400?

ВверхВниз   Решение


В выпуклом четырёхугольнике MNPQ диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S.
Найдите NS, если известно, что около четырёхугольника MNPQ можно описать окружность,  PQ = 12,  SQ = 9.

ВверхВниз   Решение


На боковых сторонах KL и MN равнобедренной трапеции KLMN выбраны соответственно точки P и Q, причём отрезок PQ параллелен основанию трапеции. Известно, что в каждую из трапеций KPQN и PLMQ можно вписать окружность и радиусы этих окружностей равны R и r соответственно. Найдите основания LM и KN.

ВверхВниз   Решение


Точки A, B, C и D последовательно расположены на окружности, причём центр O окружности расположен внутри четырёхугольника ABCD. Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что  ∠KON + ∠MOL = 180°.

ВверхВниз   Решение


ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Докажите, что площадь четырехугольника ABCD равна  (AB . CD + BC . AD)/2.

ВверхВниз   Решение


Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов равны соответственно 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника — S. Доказать, что S$ \le$17, 5.

ВверхВниз   Решение


Докажите, что при n = 4 среди полученных частей есть четырехугольник.

ВверхВниз   Решение


Докажите, что любой выпуклый многоугольник $ \Phi$ содержит два непересекающихся многоугольника $ \Phi_{1}^{}$ и $ \Phi_{2}^{}$, подобных $ \Phi$ с коэффициентом 1/2.

ВверхВниз   Решение


Каждая вершина правильного 13-угольника покрашена либо в чёрный, либо в белый цвет.
Доказать, что существуют три точки одного цвета, лежащие в вершинах равнобедренного треугольника.

ВверхВниз   Решение


С помощью циркуля и линейки опишите около данной окружности ромб с данным углом.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 501]      



Задача 54093

Темы:   [ Ромбы. Признаки и свойства ]
[ Построения ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки опишите около данной окружности ромб с данным углом.

Прислать комментарий     Решение

Задача 54211

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3
Классы: 8,9

Высота ромба, проведённая из вершины тупого угла, делит его сторону на отрезки длины a и b. Найдите диагонали ромба.

Прислать комментарий     Решение

Задача 54263

Темы:   [ Ромбы. Признаки и свойства ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

В прямоугольный треугольник с углом 60° вписан ромб со стороной, равной 6, причём угол в 60° у них общий, а все вершины ромба лежат на сторонах треугольника. Найдите стороны треугольника.

Прислать комментарий     Решение

Задача 54804

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В квадрат, площадь которого равна 18, вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 2.
Найдите площадь прямоугольника.

Прислать комментарий     Решение

Задача 54805

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В квадрат площадью 24 вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 3.
Найдите площадь прямоугольника.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .