ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть M — основание перпендикуляра, опущенного из вершины D параллелограмма ABCD на диагональ AC. Докажите, что перпендикуляры к прямым AB и BC, проведённые через точки A и C соответственно, пересекутся на прямой DM.

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 402]      



Задача 108128

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AHA, BHB и CHC.
Докажите, что треугольник с вершинами в ортоцентрах треугольников AHBHC, BHAHC и CHAHB равен треугольнику HAHBHC.

Прислать комментарий     Решение

Задача 108925

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9

Диагональ AC выпуклого четырёхугольника ABCD делится точкой пересечения диагоналей пополам. Известно, что  ∠ADB = 2∠CBD.  На диагонали BD нашлась точка K, для которой  CK = KD + AD.  Докажите, что  ∠BKC = 2∠ABD.

Прислать комментарий     Решение

Задача 116679

Темы:   [ Общие четырехугольники ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9,10

В четырёхугольнике ABCD угол B равен 150°, угол C прямой, а стороны AB и CD равны.
Найдите угол между стороной BC и прямой, проходящей через середины сторон BC и AD.

Прислать комментарий     Решение

Задача 53188

Темы:   [ Площадь круга, сектора и сегмента ]
[ Признаки и свойства параллелограмма ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4
Классы: 8,9

В параллелограмме ABCD сторона AB равна 1 и равна диагонали BD. Диагонали относятся как 1 : $ \sqrt{3}$. Найдите площадь той части круга, описанного около треугольника BCD, которая не принадлежит кругу, описанному около треугольника ADC.

Прислать комментарий     Решение


Задача 54100

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

Пусть M — основание перпендикуляра, опущенного из вершины D параллелограмма ABCD на диагональ AC. Докажите, что перпендикуляры к прямым AB и BC, проведённые через точки A и C соответственно, пересекутся на прямой DM.

Прислать комментарий     Решение


Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .