ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана трапеция ABCD с основаниями AD и BC. Биссектрисы углов при вершинах A и B пересекаются в точке M, а биссектрисы углов при вершинах C и D – в точке N. Найдите MN, если известно, что  AB = a,  BC = b,  CD = c  и  AD = d.

   Решение

Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 829]      



Задача 53857

 [Теорема Менелая]
Темы:   [ Теоремы Чевы и Менелая ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. Некоторая прямая пересекает его стороны AB, BC и продолжение стороны AC в точках C1, A1, B1 соответственно. Докажите, что

Прислать комментарий     Решение

Задача 53866

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

M и N – середины сторон AD и BC прямоугольника ABCD. На продолжении отрезка DC за точку D взята точка P, Q – точка пересечения прямых PM и AC.
Докажите, что  ∠QNM = ∠MNP.

Прислать комментарий     Решение

Задача 53883

Темы:   [ Вспомогательные подобные треугольники ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC, все стороны которого различны, биссектриса внешнего угла, смежного с углом ACB, пересекает продолжение стороны BA в точке D (A между B и D). Известно, что  BD – BC = m,  AC + AD = n.  Найдите CD.

Прислать комментарий     Решение

Задача 53885

Темы:   [ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 8,9

На основании AD трапеции ABCD взяты точки K и L так, что  AK = LD.  Отрезки AC и BL пересекаются в точке M, отрезки KC и BD – в точке N.
Докажите, что отрезок MN параллелен основаниям трапеции.

Прислать комментарий     Решение

Задача 54171

Темы:   [ Средняя линия трапеции ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

Дана трапеция ABCD с основаниями AD и BC. Биссектрисы углов при вершинах A и B пересекаются в точке M, а биссектрисы углов при вершинах C и D – в точке N. Найдите MN, если известно, что  AB = a,  BC = b,  CD = c  и  AD = d.

Прислать комментарий     Решение

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .