ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности касаются внешним образом в точке K. Одна прямая касается этих окружностей в различных точках A и B, а вторая — соответственно в различных точках C и D. Общая касательная к окружностям, проходящая через точку K, пересекается с этими прямыми в точках M и N. Найдите MN, если AC = a, BD = b.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 329]      



Задача 54178

Темы:   [ Касающиеся окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

Две окружности касаются внешним образом в точке K. Одна прямая касается этих окружностей в различных точках A и B, а вторая — соответственно в различных точках C и D. Общая касательная к окружностям, проходящая через точку K, пересекается с этими прямыми в точках M и N. Найдите MN, если AC = a, BD = b.

Прислать комментарий     Решение


Задача 55489

Темы:   [ Касающиеся окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции лежат две касающиеся окружности радиусов R, каждая из которых касается обоих оснований и одной из боковых сторон, а центры окружностей лежат на диагоналях. Найдите стороны трапеции.

Прислать комментарий     Решение


Задача 55760

Темы:   [ Касающиеся окружности ]
[ Гомотетичные окружности ]
Сложность: 3+
Классы: 8,9

Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую -- в точках C и D. Докажите, что AB || CD.

Прислать комментарий     Решение


Задача 79436

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 3+
Классы: 10

Три окружности радиусов 3, 4, 5 внешне касаются друг друга. Через точку касания окружностей радиусов 3 и 4 проведена их общая касательная. Найти длину отрезка этой касательной, заключённой внутри окружности радиуса 5.
Прислать комментарий     Решение


Задача 102286

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Две окружности радиусов $ \sqrt{19}$ и $ \sqrt{76}$, касающиеся друг друга внешним образом, вписаны в полуокружность (т.е. каждая из окружностей касается этой полуокружности и её диаметра). Найдите радиус полуокружности.
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .