ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из вершины A острого угла ромба ABCD опущены перпендикуляры AM и AN на продолжения сторон BC и CD. В четырёхугольник AMCN вписана окружность радиуса 1. Найдите сторону ромба, если $ \angle$BAC = 2arctg$ {\frac{1}{2}}$.

   Решение

Задачи

Страница: << 116 117 118 119 120 121 122 >> [Всего задач: 769]      



Задача 54373

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

Из вершины A острого угла ромба ABCD опущены перпендикуляры AM и AN на продолжения сторон BC и CD. В четырёхугольник AMCN вписана окружность радиуса 1. Найдите сторону ромба, если $ \angle$BAC = 2arctg$ {\frac{1}{2}}$.

Прислать комментарий     Решение


Задача 55515

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9

Три окружности попарно касаются друг друга внешним образом в точках A, B и C. Докажите, что касательные к этим окружностям в точках A, B и C пересекаются в одной точке.

Прислать комментарий     Решение


Задача 30909

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 6,7

Вокруг экватора натянули верёвку. Затем её удлинили на 1 см и опять натянули, приподняв в одном месте.
Сможет ли человек пройти в образовавшийся зазор?

Прислать комментарий     Решение

Задача 37004

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
[ Признаки равенства прямоугольных треугольников ]
[ Вписанные и описанные окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4-
Классы: 10

В треугольнике АВС  М – точка пересечения медиан, О – центр вписанной окружности.
Докажите, что если прямая ОМ параллельна стороне ВС, то точка О равноудалена от середин сторон АВ и АС.

Прислать комментарий     Решение

Задача 52701

Темы:   [ Касающиеся окружности ]
[ Отношения линейных элементов подобных треугольников ]
[ Общая касательная к двум окружностям ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 8,9

Точки M и N принадлежат боковым сторонам соответственно AB и AC равнобедренного треугольника ABC, причём  MN || BC,  а в трапецию BMNC можно вписать окружность. Её радиус равен R, а радиус вписанной окружности треугольника AMN равен r. Найдите
  а) основание BC;
  б) расстояние от точки A до ближайшей точки касания;
  в) расстояние между хордами окружностей, соединяющими точки касания с боковыми сторонами трапеции BMNC.

Прислать комментарий     Решение

Страница: << 116 117 118 119 120 121 122 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .