Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Дана прямоугольная трапеция ABCD, в которой  ∠C = ∠B = 90°.  На стороне AD как на диаметре построена окружность, которая пересекает сторону BC в точках M и N. Докажите, что  BM·MC = AB·CD.

Вниз   Решение


Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC.

ВверхВниз   Решение


Правильную четырёхугольную пирамиду PKLMN с вершиной P пересекает плоскость, проходящая через вершину основания L и перпендикулярная ребру PN . Площадь получившегося сечения в три раза меньше площади основания пирамиды. Найдите отношение отрезка PK к высоте пирамиды.

ВверхВниз   Решение


В правильной четырёхугольной пирамиде расположены два одинаковых шара радиуса r , касающиеся основания пирамиды в точках, принадлежащих отрезку, соединяющему середины противоположных сторон основания. Каждый из шаров касается боковой грани пирамиды и другого шара. Найдите высоту пирамиды, при которой объём пирамиды наименьший.

ВверхВниз   Решение


В правильной пирамиде SMNPQ ( S – вершина) точки K и F – середины рёбер PQ и QM соответственно, точка E лежит на отрезке SK , причём SK = 4 , SE = . Расстояние от точки S до прямой EF равно . Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке S . Рассматриваются всевозможные правильные тетраэдры ABCD такие, что точки A и B лежат на прямой EF , а прямая CD касается сферы в одной из точек отрезка CD . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.

ВверхВниз   Решение


В королевстве некоторые пары городов соединены железной дорогой. У короля есть полный список, в котором поименно перечислены все такие пары (каждый город имеет свое собственное имя). Оказалось, что для любой упорядоченной пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, а король не заметил бы изменений. Верно ли, что для любой пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, второй город оказался названным именем первого города, а король не заметил бы изменений?

ВверхВниз   Решение


Между зажимами A и B включено несколько сопротивлений. Каждое сопротивление имеет входной и выходной зажимы. Какое наименьшее число сопротивлений необходимо иметь и какова может быть схема их соединения, чтобы при порче любых девяти сопротивлений цепь оставалась соединяющей зажимы A и B, но не было короткого замыкания? (Порча сопротивления: короткое замыкание или обрыв.)

ВверхВниз   Решение


$ \Delta$ABC разбит прямой BD на два треугольника. Докажите, что сумма радиусов окружностей, вписанных в $ \Delta$ABD и $ \Delta$DBC, больше радиуса окружности, вписанной в $ \Delta$ABC.

ВверхВниз   Решение


В равнобедренном треугольнике ABC длина основания AC равна 2$ \sqrt{7}$, длина боковой стороны равна 8. Точка K делит высоту BD треугольника в отношении 2:3, считая от точки B. Что больше: длина CK или длина AC?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1663]      



Задача 54431

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Перпендикуляр и наклонная ]
Сложность: 2+
Классы: 8,9

В равнобедренном треугольнике ABC длина основания AC равна 2$ \sqrt{7}$, длина боковой стороны равна 8. Точка K делит высоту BD треугольника в отношении 2:3, считая от точки B. Что больше: длина CK или длина AC?

Прислать комментарий     Решение


Задача 35612

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Метрические соотношения (прочее) ]
Сложность: 2+
Классы: 9,10

Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор.
Прислать комментарий     Решение


Задача 35647

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 2+
Классы: 9,10

В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков).
Прислать комментарий     Решение


Задача 35687

Темы:   [ Правильный (равносторонний) треугольник ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2+
Классы: 8,9

По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна 600.
Прислать комментарий     Решение


Задача 52394

Темы:   [ Прямоугольный треугольник с углом в 30 ]
[ Признаки и свойства касательной ]
Сложность: 2+
Классы: 8,9

Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1663]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .