ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
На продолжениях медиан AK, BL и CM треугольника ABC взяты
точки P, Q и R, причём
KP =
Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
Даны две непересекающиеся окружности радиусов R и 2R. К ним
проведены общие касательные, которые пересекаются в точке A
отрезка, соединяющего центры окружностей. Расстояние между
центрами окружностей равно
2R
Докажите, что число состоящее из 243 единиц делится на 243.
Внутри выпуклого четырёхугольника расположены четыре окружности, каждая из которых касается двух соседних сторон четырёхугольника и двух окружностей (внешним образом). Известно, что в четырёхугольник можно вписать окружность. Докажите, что по крайней мере две из данных окружностей равны.
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
Диагонали выпуклого четырёхугольника равны c и d и пересекаются под углом 45o. Найдите отрезки, соединяющие середины противоположных сторон четырёхугольника.
Найдите наибольшее значение функции y = ln (x+4)5-5x на отрезке [-3,5;0] . Точки A, B, C и D последовательно расположены на окружности, причём центр O окружности расположен внутри четырёхугольника ABCD. Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что ∠KON + ∠MOL = 180°. На сторонах произвольного треугольника ABC во внешнюю сторону построены равносторонние треугольники ABC1, A1BC и AB1C.
Найдите геометрическое место точек, из которых проведены касательные к данной окружности, равные заданному отрезку.
|
Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 772]
Прямая касается двух окружностей в точках A и B. Линия центров
пересекает первую окружность в точках E и C, а вторую – в точках D и F.
Окружность, центр которой лежит вне квадрата ABCD, проходит через точки B и C.
Окружность, центр которой лежит внутри квадрата PQRS, проходит через точки Q и R.
Найдите геометрическое место точек, из которых проведены касательные к данной окружности, равные заданному отрезку.
Два колеса радиусов r и R катаются по прямой m. Найдите геометрическое место точек пересечения M их общих внутренних касательных.
Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке