Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

Вниз   Решение


В равнобедренном треугольнике ABC (AB = BC) биссектрисы BD и AF пересекаются в точке O. Отношение площади треугольника DOA к площади треугольника BOF равно $ {\frac{3}{8}}$. Найдите отношение $ {\frac{AC}{AB}}$.

ВверхВниз   Решение


В правильной треугольной пирамиде SABC ( S – вершина, SA = 2 ) точка D – середина ребра SB . Расстояние от точки C до прямой AD равно . Найдите объём пирамиды. Дана сфера радиуса с центром в точке C . Рассматриваются всевозможные правильные тетраэдры MNPQ такие, что точки P и Q лежат на прямой AD , а прямая MN касается сферы в одной из точек отрезка MN . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.

ВверхВниз   Решение


В окружности проведены хорды AB и BC, причём AB = $ \sqrt{3}$, BC = 3$ \sqrt{3}$, $ \angle$ABC = 60o. Найдите длину той хорды окружности, которая делит угол ABC пополам.

ВверхВниз   Решение


По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна 600.

ВверхВниз   Решение


Тройки чисел (xn, yn, zn) (n $ \geqslant$ 1) строятся по правилу: x1 = 2, y1 = 4, z1 = 6/7,

xn + 1 = $\displaystyle {\frac{2x_n}{x_n^2-1}}$,    yn + 1 = $\displaystyle {\frac{2y_n}{y_n^2-1}}$,    zn + 1 = $\displaystyle {\frac{2z_n}{z_n^2-1}}$,    (n $\displaystyle \geqslant$ 1).


а) Докажите, что указанный процесс построения троек может быть неограниченно продолжен.
б) Может ли на некотором шаге получится тройка чисел (xn, yn, zn), для которой xn + yn + zn = 0?

ВверхВниз   Решение


Найдите двузначное число, которое вдвое больше произведения своих цифр.

ВверхВниз   Решение


Пусть H — точка пересечения высот треугольника ABC. Докажите, что треугольник с вершинами в центрах описанных окружностей треугольников BHC, AHC и AHB равен треугольнику ABC.

ВверхВниз   Решение


С помощью циркуля и линейки впишите в данный треугольник равнобедренный треугольник данной высоты так, чтобы основание его было параллельно одной из сторон данного треугольника.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 93]      



Задача 54518

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
Сложность: 3-
Классы: 8,9

Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

Прислать комментарий     Решение


Задача 116707

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Метод ГМТ ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Под одной из клеток доски 8×8 зарыт клад. Под каждой из остальных зарыта табличка, в которой указано, за какое наименьшее число шагов можно добраться из этой клетки до клада (одним шагом можно перейти из клетки в соседнюю по стороне клетку). Какое наименьшее число клеток надо перекопать, чтобы наверняка достать клад?

Прислать комментарий     Решение

Задача 52577

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
Сложность: 3
Классы: 8,9

Постройте прямоугольный треугольник по гипотенузе и проекции одного из катетов на гипотенузу.

Прислать комментарий     Решение


Задача 54526

Темы:   [ Построения ]
[ Метод ГМТ ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки впишите в данный треугольник равнобедренный треугольник данной высоты так, чтобы основание его было параллельно одной из сторон данного треугольника.

Прислать комментарий     Решение


Задача 52558

Темы:   [ Построения ]
[ Метод ГМТ ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки постройте окружность, которая касалась бы двух данных параллельных прямых и круга, находящегося между ними.

Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .