ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На одной из сторон угла взяты две точки A и B. Найдите на другой стороне угла точку C такую, чтобы угол ACB был наибольшим. Постройте точку C с помощью циркуля и линейки. Решение |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 769]
Дана окружность Ω и точка P вне её. Проходящая через точку P прямая l пересекает окружность в точках A и B. На отрезке AB отмечена такая точка C, что PA·PB = PC². Точки M и N – середины двух дуг, на которые хорда AB разбивает окружность Ω. Докажите, что величина угла MCN не зависит от выбора прямой l.
Окружность и прямая касаются в точке M. Из точек A и B этой окружности опущены перпендикуляры на прямую, равные a и b соответственно. Найдите расстояние от точки M до прямой AB.
Окружность, вписанная в трапецию ABCD, касается боковой стороны AB в точке F. Найдите площадь трапеции, если AF = m, FB = n, а меньшее основание трапеции BC равно b.
На одной из сторон угла взяты две точки A и B. Найдите на другой стороне угла точку C такую, чтобы угол ACB был наибольшим. Постройте точку C с помощью циркуля и линейки.
Периметр параллелограмма ABCD равен 26. Угол ABC равен 120o. Радиус окружности, вписанной в треугольник BCD, равен . Найдите стороны параллелограмма, если известно, что сторона AD больше стороны AB.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|