ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны отрезки a, b, c, d и e. С помощью циркуля и линейки постройте отрезок, равный abc/de.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 829]      



Задача 54061

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства касательной ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Прямая касается двух окружностей в точках A и B. Линия центров пересекает первую окружность в точках E и C, а вторую – в точках D и F.
Докажите, что прямая AC либо параллельна, либо перпендикулярна BD.

Прислать комментарий     Решение

Задача 54662

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Построения с помощью вычислений ]
Сложность: 3+
Классы: 8,9

Даны отрезки a, b и c. С помощью циркуля и линейки постройте отрезок x, для которого  x : a = b : c.

Прислать комментарий     Решение

Задача 54663

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Построения с помощью вычислений ]
Сложность: 3+
Классы: 8,9

Даны отрезки a, b, c, d и e. С помощью циркуля и линейки постройте отрезок, равный abc/de.

Прислать комментарий     Решение

Задача 54740

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 3+
Классы: 8,9

В деревне у прямой дороги с интервалами в 50 метров стоят четыре избы A, B, C и D. В какой точке дороги надо выкопать колодец, чтобы сумма расстояний от колодца до изб была бы наименьшей?

Прислать комментарий     Решение

Задача 54742

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3+
Классы: 8,9

На прямой выбрали четыре точки A, B, C, D и измерили расстояния AB, AC, AD, BC, BD и CD. Могут ли они быть равными (в порядке возрастания)
  а) 1, 2, 3, 4, 5, 6;
  б) 1, 1, 1, 2, 2, 4.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .