ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Угол при вершине A ромба ABCD равен 20°. Точки M и
N – основания перпендикуляров, опущенных из вершины B на
стороны AD и CD. Точка D лежит на стороне AB треугольника ABC. Найдите CD, если известно, что BC = 37, AC = 15, AB = 44, AD = 14. В окружности радиуса 1 проведено несколько хорд.
Докажите, что если каждый диаметр пересекает не более k
хорд, то сумма длин хорд меньше
Около четырёхугольника ABCD можно описать окружность. Кроме того, AB = 3, BC = 4, CD = 5 и AD = 2. Найдите AC.
Даны четыре окружности
S1, S2, S3 и S4, причем
окружности Si и Si + 1 касаются внешним образом для i = 1, 2, 3, 4
(S5 = S1). Докажите, что радикальная ось окружностей S1
и S3 проходит через точку пересечения общих внешних касательных
к S2 и S4.
В угол с вершиной A , равный 60o , вписана окружность с центром O . К этой окружности проведена касательная, пересекающая стороны угла в точках B и C . Отрезок BC пересекается с отрезком AO в точке M . Найдите радиус окружности, вписанной в треугольник ABC , если AM:MO = 2:3 и BC = 7 . Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB: а) вдвое меньше AB; б) вдвое меньше OA. В графе 20 вершин, степень каждой не меньше 10. Доказать, что в нём есть гамильтонов путь. В неравнобедренном треугольнике ABC биссектрисы углов A и B обратно пропорциональны противолежащим сторонам. Найдите угол C. Восемь детей разделили между собой 32 персика следующим образом. Аня получила 1 персик, Катя – 2, Лиза – 3 и Даша – 4. Коля Иванов взял столько же персиков, сколько и его сестра, Пете Гришину досталось вдвое больше персиков, чем его сестре, Толе Андрееву – втрое больше, чем его сестре, и, наконец, Вася Сергеев получил персиков вчетверо больше, чем его сестра. Назовите фамилии четырёх девочек. В равнобедренном треугольнике ABC ∠B = 120°. Найдите общую хорду описанной окружности треугольника ABC и окружности, проходящей через центр вписанной окружности и основания биссектрис углов A и C, если AC = 1. Дан многочлен P(x) с действительными коэффициентами. Бесконечная
последовательность различных натуральных чисел a1, a2, a3, ... такова, что Докажите, что произведения отрезков пересекающихся хорд окружности равны между собой. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 401]
Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD.
Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB: а) вдвое меньше AB; б) вдвое меньше OA.
Равные хорды окружности с центром O пересекаются в точке M. Докажите, что MO – биссектриса угла между ними.
Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды.
Докажите, что произведения отрезков пересекающихся хорд окружности равны между собой.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 401]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке