ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба? Докажите, что
cos2( Дано n окружностей: O1, O2,...On, проходящих через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3,..., O3 с O1 обозначим соответственно через A1, A2,..., An. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадает с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Продолжая таким образом, мы получим точку Bn на окружности On. Если On не совпадает с An, то проводим через Bn и An прямую до второго пересечения с O1 в точке Bn + 1. Докажите, что Bn + 1 совпадает с B1.
В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD, пересекающиеся в точке O. Найдите площадь четырёхугольника ADOE, зная, что BC = a, AC = b.
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, находящейся между точками B и
C, причём
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, лежащей между точками B и C,
причём
BD : BC =
В правильной треугольной пирамиде SABC ( S – вершина, SA = 4 ) точка D лежит на ребре SC , CD = 3 , а расстояние от точки A до прямой BD равно 2. Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке A . Рассматриваются всевозможные правильные тетраэдры MNPQ такие, что точки M и N лежат на прямой BD , а прямая PQ касается сферы в одной из точек отрезка PQ . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров. Окружность с центром в точке пересечения диагоналей KM и LN равнобедренной трапеции KLMN касается меньшего основания LM и боковой стороны MN. Найдите периметр трапеции KLMN, если известно, что её высота равна 36, а радиус окружности равен 11.
Одна из сторон параллелограмма равна 10, а диагонали равны 20 и 24. Найдите косинус острого угла между диагоналями.
|
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1663]
В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны
Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.
Одна из сторон параллелограмма равна 10, а диагонали равны 20 и 24. Найдите косинус острого угла между диагоналями.
Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C.
В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1663]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке