ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стороне AB треугольника ABC как на диаметре построена окружность, пересекающая стороны AC и BC в точках D и E соответственно. Прямая DE делит площадь треугольника ABC пополам и образует с прямой AB угол 15o. Найдите углы треугольника ABC.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 460]      



Задача 55332

Темы:   [ Отношение площадей подобных треугольников ]
[ Теорема косинусов ]
[ Площадь параллелограмма ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD основание AD равно 16, сумма диагоналей AC и BD равна 36, угол CAD равен 60o. Отношение площадей треугольников AOD и BOC, где O — точка пересечения диагоналей, равно 4. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 102419

Темы:   [ Отношение площадей подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

В трапеции с основаниями 3 и 4 найдите длину отрезка, параллельного основаниям и делящего плошадь трапеции в отношении 5:2, считая от меньшего основания.

Прислать комментарий     Решение


Задача 54810

Темы:   [ Отношение площадей подобных треугольников ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

На стороне AB треугольника ABC как на диаметре построена окружность, пересекающая стороны AC и BC в точках D и E соответственно. Прямая DE делит площадь треугольника ABC пополам и образует с прямой AB угол 15o. Найдите углы треугольника ABC.

Прислать комментарий     Решение


Задача 54845

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

На боковой стороне AB трапеции ABCD взята такая точка M, что AM : BM = 2 : 3. На противоположной стороне CD взята такая точка N, что отрезок MN делит трапецию на части, одна из которых по площади втрое больше другой. Найдите отношение CN : DN, если BC : AD = 1 : 2.

Прислать комментарий     Решение


Задача 54906

Темы:   [ Отношение площадей подобных треугольников ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

В окружности проведены хорды AC и BD, пересекающиеся в точке E, причём касательная к окружности, проходящая через точку A, параллельна BD. Известно, что CD : ED = 3 : 2 и S$\scriptstyle \Delta$ABE = 8. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .