ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Частные случаи треугольников
>>
Прямоугольные треугольники
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В трапеции MNPQ даны основания MQ = 4, NP = 2 и углы M и Q при основании, равные соответственно
arctg 5 и arctg ½. |
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1354]
В трапеции ABCD даны основания AD = 4, BC = 1 и углы A и D при основании, равные соответственно arctg 2 и arctg 3.
В трапеции MNPQ даны основания MQ = 4, NP = 2 и углы M и Q при основании, равные соответственно
arctg 5 и arctg ½.
На катетах CA и CB равнобедренного прямоугольного треугольника ABC выбраны точки D и E так, что CD = CE. Продолжения перпендикуляров, опущенных из точек D и C на прямую AE, пересекают гипотенузу AB в точках K и L. Докажите, что KL = LB.
Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.
Даны N прямоугольных треугольников. У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что у всех исходных треугольников одно и то же отношение большего катета к меньшему, если
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1354] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|