Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

Вниз   Решение


Автор: Фольклор

Найдите такое значение $a > 1$,  при котором уравнение  $a^x = \log_a x$  имеет единственное решение.

ВверхВниз   Решение


В треугольник ABC вписана окружность. Пусть x — расстояние от вершины A до касания окружности со стороной AB, BC = a. Докажите, что x = p - a, где p — полупериметр треугольника.

ВверхВниз   Решение


Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.

ВверхВниз   Решение


Dписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что  AA1 = BB1 = CC1.  Докажите, что треугольник ABC правильный.

ВверхВниз   Решение


Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.

ВверхВниз   Решение


Боковое ребро пирмиды разделено на 100 равных частей и через точки деления проведены плоскости, параллельные основанию. Найдите отношение площадей наибольшего и наименьшего из получившихся сечений.

ВверхВниз   Решение


В треугольнике известны сторона a и два прилежащих к ней угла β и γ. Найдите биссектрису, проведённую из вершины третьего угла.

ВверхВниз   Решение


Найдите объём правильной треугольной пирамиды с боковым ребром b и углом α бокового ребра с плоскостью основания.

ВверхВниз   Решение


Основанием пирамиды служит многоугольник, около которого можно описать окружность. Докажите, что около этой пирамиды можно описать сферу. Найдите радиус этой сферы, если радиус окружности, описанной около основания пирамиды, равен r, высота равна h, а основание высоты совпадает с вершиной основания пирамиды.

ВверхВниз   Решение


Дана последовательность ..., a-n,..., a-1, a0, a1,..., an,... бесконечная в обе стороны, причём каждый её член равен $ {\frac{1}{4}}$ суммы двух соседних. Доказать, что если какие-то два её члена равны, то в ней есть бесконечное число пар равных между собой чисел. (Пояснение: два члена, про которые известно, что они равны, не обязательно соседние).

ВверхВниз   Решение


Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?

ВверхВниз   Решение


В некотором царстве, в некотором государстве было выпущено неограниченное количество монет достоинством в n1, n2, n3, ... копеек, где
n1 < n < 2 < n3 < ...  – бесконечная последовательность, состоящая из натуральных чисел. Докажите, что эту последовательность можно оборвать, то есть найдётся такое число N, что любую сумму, которую можно уплатить без сдачи выпущенными монетами, на самом деле можно уплатить только монетами достоинством в n1, n2, ..., nN копеек.

ВверхВниз   Решение


Шеренга солдат называется неправильной, если никакие три подряд стоящих солдата не стоят по росту (ни в порядке возрастания, ни в порядке убывания). Сколько неправильных шеренг можно построить из n солдат разного роста, если

  а)  n = 4;

  б)  n = 5?

ВверхВниз   Решение


Докажите, что выражение  x5 + 3x4y – 5x³y2 – 15x²y³ + 4xy4 + 12y5  не равно 33 ни при каких целых значениях x и y.

ВверхВниз   Решение


В треугольнике даны два угла β и γ и радиус R описанной окружности. Найдите радиус вписанной окружности.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 531]      



Задача 54720

Темы:   [ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Найдите радиус окружности, описанной около треугольника со сторонами a, a и b.

Прислать комментарий     Решение

Задача 54722

Тема:   [ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Найдите гипотенузу прямоугольного треугольника с острым углом, равным 30o, если известно, что биссектриса, проведённая из вершины прямого угла, равна a.

Прислать комментарий     Решение


Задача 54726

Темы:   [ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC, в котором  ∠A = α,  ∠B = β.  На стороне AB взята точка D, а на стороне AC – точка M, причём CD – биссектриса треугольника ABC,
DM || BC  и  AM = a.  Найдите CM.

Прислать комментарий     Решение

Задача 54727

Темы:   [ Теорема синусов ]
[ Периметр треугольника ]
Сложность: 3+
Классы: 8,9

Углы треугольника равны α, β и γ, а периметр равен P. Найдите стороны треугольника.

Прислать комментарий     Решение

Задача 54855

Темы:   [ Теорема синусов ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Формулы для площади треугольника ]
[ Применение тригонометрических формул (геометрия) ]
[ Углы между биссектрисами ]
Сложность: 3+
Классы: 8,9

В треугольнике даны два угла β и γ и радиус R описанной окружности. Найдите радиус вписанной окружности.

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 531]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .