ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Около трапеции KLMN описана окружность, причём основание KN является её диаметром. Известно, что KN = 4, LM = 2. Хорда MT пересекает диаметр KN в точке S, причём KS : SN = 1 : 3. Найдите площадь треугольника STN.
В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B. В треугольнике ABC точка M лежит на стороне AC, а точка L на стороне BC расположена так, что BL : LC = 2 : 5. Прямая, проходящая через точку L параллельно стороне AB, пересекает отрезок BM в точке O, причём BO : OM = 7 : 4. Найдите отношение, в котором точка M делит сторону AC. На стороне AC треугольника ABC произвольно выбрана точка D. Касательная, проведённая в точке D к описанной окружности треугольника BDC, пересекает сторону AB в точке C1; аналогично определяется точка A1. Докажите, что A1C1 || AC. На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части. Дан ромб со стороной a и острым углом α. На рисунке изображено, как изменялся курс тугрика в течение недели. У Пети было 30 рублей. В один из дней недели он обменял все свои рубли на тугрики. Потом он обменял все тугрики на рубли. Затем он ещё раз обменял все вырученные рубли на тугрики, и в конце концов, обменял все тугрики обратно на рубли. Напишите, в какие дни он совершал эти операции, если в воскресенье у него оказалось 54 рубля. (Достаточно привести пример.)
В пятиугольнике ABCDE углы ABC и AED – прямые, AB = AE и BC = CD = DE. Диагонали BD и CE пересекаются в точке F. Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.
ctg 30o + ctg 75o = 2.
В треугольнике ABC угол C равен 30°, а угол A – острый. Перпендикулярно стороне BC проведена прямая, отсекающая от треугольника ABC треугольник CNM (точка N лежит между вершинами B и C). Площади треугольников CNM и ABC относятся, как 3 : 16. Отрезок MN равен половине высоты BH треугольника ABC. Найдите отношение AH : HC. |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 517]
На сторонах AB и BC треугольника ABC отмечены точки D и E соответственно, причём BD + DE = BC и BE + ED = AB. Известно, что четырёхугольник ADEC – вписанный. Докажите, что треугольник ABC – равнобедренный.
Площадь треугольника ABC равна 16. На сторонах AB, BC и AC этого треугольника взяты соответственно точки P, Q и R, причём прямая PQ параллельна AC, а прямая BR проходит через точку пересечения прямых PC и AQ. Известно, что S – точка пересечения PQ и BR, и на отрезке BS взята точка T так, что
В треугольнике ABC угол C равен 30°, а угол A – острый. Перпендикулярно стороне BC проведена прямая, отсекающая от треугольника ABC треугольник CNM (точка N лежит между вершинами B и C). Площади треугольников CNM и ABC относятся, как 3 : 16. Отрезок MN равен половине высоты BH треугольника ABC. Найдите отношение AH : HC.
В трапеции MPQF основания MF = 24, PQ = 4. Высота трапеции равна 5. Точка N делит боковую сторону на отрезки MN и NP, причём MN = 3NP.
Высота трапеции ABCD равна 7, основания AD и BC равны соответственно 8 и 6. Через точку E, лежащую на стороне CD, проведена прямая BE, которая делит диагональ AC в точке O в отношении AO : OC = 3 : 2. Найдите площадь треугольника OEC.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 517]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке