ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки. Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.
Точка M лежит на стороне BC параллелограмма ABCD с углом
45o
при вершине A, причём
Дан треугольник ABC. Найдите множество центров
прямоугольников PQRS, вершины Q и P которых лежат на
стороне AC, вершины R и S — на сторонах AB и BC
соответственно.
В треугольнике ABC угол A равен 45o, а угол C — острый. Из середины стороны BC опущен перпендикуляр NM на сторону AC. Площади треугольников NMC и ABC относятся, как 1:8. Найдите углы треугольника ABC.
На сторонах AB и AD параллелограмма ABCD взяты соответственно точки E и F, причём отрезок EF параллелен диагонали BD. Докажите, что площади треугольников BCE и CDF равны.
|
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 462]
В треугольнике ABC угол A равен 45o, а угол C — острый. Из середины стороны BC опущен перпендикуляр NM на сторону AC. Площади треугольников NMC и ABC относятся, как 1:8. Найдите углы треугольника ABC.
В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Площади треугольников BOC, COD, AOD равны соответственно 20, 40, 60. Найдите угол BAO, если известно, что AB = 15, AO = 8, а угол BAO больше 31o.
Прямая CE пересекает сторону AB треугольника ABC в точке E,
а прямая BD пересекает сторону AC в точке D. Прямые CE и BD
пересекаются в точке O. Площади треугольников BOE, BOC, COD
равны соответственно 15, 30, 24. Найдите угол DOE, если
известно, что OE = 4,
OD = 4
На сторонах AB и AD параллелограмма ABCD взяты соответственно точки E и F, причём отрезок EF параллелен диагонали BD. Докажите, что площади треугольников BCE и CDF равны.
Равнобедренная трапеция, у которой угол при основании равен 60o, описана около окружности. В каком отношении прямая, соединяющая точки касания окружности с боковыми сторонами, делит площадь трапеции.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 462]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке