ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах AB и AD параллелограмма ABCD взяты соответственно точки E и F, причём отрезок EF параллелен диагонали BD. Докажите, что площади треугольников BCE и CDF равны. Решение |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 460]
В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Площади треугольников BOC, COD, AOD равны соответственно 20, 40, 60. Найдите угол BAO, если известно, что AB = 15, AO = 8, а угол BAO больше 31o.
Прямая CE пересекает сторону AB треугольника ABC в точке E, а прямая BD пересекает сторону AC в точке D. Прямые CE и BD пересекаются в точке O. Площади треугольников BOE, BOC, COD равны соответственно 15, 30, 24. Найдите угол DOE, если известно, что OE = 4, OD = 4, а угол BOE — острый.
На сторонах AB и AD параллелограмма ABCD взяты соответственно точки E и F, причём отрезок EF параллелен диагонали BD. Докажите, что площади треугольников BCE и CDF равны.
Равнобедренная трапеция, у которой угол при основании равен 60o, описана около окружности. В каком отношении прямая, соединяющая точки касания окружности с боковыми сторонами, делит площадь трапеции.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 460] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|