|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Существуют ли три попарно различных ненулевых целых числа, сумма которых равна нулю, а сумма тринадцатых степеней которых является квадратом некоторого натурального числа? На стороне AC треугольника ABC взята точка D так, что AD : DC = 1 : 2. Докажите что у треугольников ADB и CDB есть по равной медиане. Существует ли треугольник, все высоты которого меньше 1, а площадь больше или равна 10?
|
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1041]
Укажите такое шестизначное число N, состоящее из различных цифр, что числа 2N, 3N, 4N, 5N, 6N отличаются от него перестановкой цифр.
Существует ли треугольник, все высоты которого меньше 1, а площадь больше или равна 10?
Биссектрисы AA1 и BB1 треугольника ABC пересекаются в точке I. На отрезках A1I и B1I построены как на основаниях равнобедренные треугольники с вершинами A2 и B2, лежащими на прямой AB. Известно, что прямая CI делит отрезок A2B2 пополам. Верно ли, что треугольник ABC – равнобедренный?
Даны 15 целых чисел, среди которых нет одинаковых. Петя записал на доску все возможные суммы по 7 из этих чисел, а Вася – все возможные суммы по 8 из этих чисел. Могло ли случиться, что они выписали на доску одни и те же наборы чисел? (Если какое-то число повторяется несколько раз в наборе у Пети, то и у Васи оно должно повторяться столько же раз.)
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1041] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|