ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Отрезок, соединяющий середины двух противоположных сторон выпуклого четырёхугольника, равен полусумме двух других сторон.
Докажите, что этот четырёхугольник – трапеция или параллелограмм.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]      



Задача 108223

Темы:   [ Пересекающиеся окружности ]
[ Признаки и свойства касательной ]
[ Гомотетия помогает решить задачу ]
[ Средняя линия трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5+
Классы: 8,9,10,11

Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l .
Прислать комментарий     Решение


Задача 98463

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
  а) делит периметр треугольника ABC пополам;
  б) параллельна биссектрисе угла ACB.

Прислать комментарий     Решение

Задача 56999

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Две касательные, проведенные из одной точки ]
[ Средняя линия трапеции ]
Сложность: 4-
Классы: 8,9

Вписанная окружность треугольника ABC касается сторон CA и AB в точках B1 и C1, а вневписанная окружность касается продолжения этих сторон в точках B2 и C2. Докажите, что середина стороны BC равноудалена от прямых B1C1 и B2C2.

Прислать комментарий     Решение

Задача 55202

Темы:   [ Трапеции (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные равные треугольники ]
[ Средняя линия треугольника ]
[ Неравенства с векторами ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Отрезок, соединяющий середины двух противоположных сторон выпуклого четырёхугольника, равен полусумме двух других сторон.
Докажите, что этот четырёхугольник – трапеция или параллелограмм.

Прислать комментарий     Решение

Задача 116168

Темы:   [ Параллелограммы (прочее) ]
[ Метод ГМТ ]
[ ГМТ - прямая или отрезок ]
[ ГМТ - окружность или дуга окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Средняя линия трапеции ]
[ Четырехугольники (построения) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Постройте параллелограмм ABCD, если на плоскости отмечены три точки: середины его высот BH и BP и середина стороны AD.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .