|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На диагонали единичного куба взяты точки M и N , а на скрещивающейся с ней диагонали грани – точки P и Q . Известно, что MN = Известно, что а, b и c – различные составные натуральные числа, но каждое из них не делится ни на одно из целых чисел от 2 до 100 включительно. Докажите, что если эти числа – наименьшие из возможных, то их произведение abc является кубом натурального числа. Девять одинаковых воробьев склёвывают меньше чем 1001 зёрнышко, а десять таких же воробьев склёвывают больше чем 1100 зёрнышек. По скольку зёрнышек склёвывает каждый воробей? В треугольнике ABC угол A равен 60°. Докажите, что AB + AC ≤ 2BC. |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 290]
Докажите, что сумма диагоналей выпуклого пятиугольника ABCDE больше периметра, но меньше удвоенного периметра.
На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что MA + MB > CA + CB.
Докажите, что в треугольнике со сторонами a, b, c
медиана m, проведённая к стороне c, удовлетворяет неравенству
m >
В треугольнике ABC угол A равен 60°. Докажите, что AB + AC ≤ 2BC.
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. В области, ограниченной отрезками AB, AC и меньшей дугой BC, расположен отрезок. Докажите, что его длина не превышает AB.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 290] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|