ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На диагонали единичного куба взяты точки M и N , а на скрещивающейся с ней диагонали грани – точки P и Q . Известно, что MN = , а PQ = . Найдите объём тетраэдра MNPQ .

Вниз   Решение


Известно, что а, b и c – различные составные натуральные числа, но каждое из них не делится ни на одно из целых чисел от 2 до 100 включительно. Докажите, что если эти числа – наименьшие из возможных, то их произведение abc является кубом натурального числа.

ВверхВниз   Решение


Девять одинаковых воробьев склёвывают меньше чем 1001 зёрнышко, а десять таких же воробьев склёвывают больше чем 1100 зёрнышек. По скольку зёрнышек склёвывает каждый воробей?

ВверхВниз   Решение


В треугольнике ABC угол A равен 60°. Докажите, что  AB + AC ≤ 2BC.

Вверх   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 290]      



Задача 55163

Темы:   [ Пятиугольники ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма диагоналей выпуклого пятиугольника ABCDE больше периметра, но меньше удвоенного периметра.

Прислать комментарий     Решение

Задача 55164

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что  MA + MB > CA + CB.

Прислать комментарий     Решение

Задача 55193

Темы:   [ Неравенства с медианами ]
[ Неравенство треугольника ]
Сложность: 3+
Классы: 8,9

Докажите, что в треугольнике со сторонами a, b, c медиана m, проведённая к стороне c, удовлетворяет неравенству m > $ {\frac{a+b-c}{2}}$.

Прислать комментарий     Решение


Задача 55232

Темы:   [ Неравенство треугольника ]
[ Сумма длин диагоналей четырехугольника ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол A равен 60°. Докажите, что  AB + AC ≤ 2BC.

Прислать комментарий     Решение

Задача 57477

Темы:   [ Геометрические неравенства (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8

Автор: Фольклор

В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. В области, ограниченной отрезками AB, AC и меньшей дугой BC, расположен отрезок. Докажите, что его длина не превышает AB.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .