ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Через вершины A, B, C, D вписанного четырёхугольника, диагонали которого взаимно перпендикулярны, проведены касательные к описанной окружности. Докажите, что образованный ими четырёхугольник — вписанный. Решение |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 175]
Дан ромб ABCD. Окружность радиуса R касается прямых AB и AD в точках B и D соответственно и пересекает сторону BC в точке L, причём 4BL = BC. Найдите площадь ромба.
Через вершины A, B, C, D вписанного четырёхугольника, диагонали которого взаимно перпендикулярны, проведены касательные к описанной окружности. Докажите, что образованный ими четырёхугольник — вписанный.
О выпуклом четырёхугольнике ABCD известно, что окружность с диаметром AB касается прямой CD. Докажите, что окружность с диаметром CD касается прямой AB тогда и только тогда, когда прямые BC и AD параллельны.
Прямые PC и PD касаются окружности с диаметром AB (C и D — точки касания). Докажите, что прямая, соединяющая точку P с точкой пересечения прямых AC и BD, перпендикулярна AB.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 175] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|