Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Дан выпуклый пятиугольник. Каждая диагональ отсекает от него треугольник. Докажите, что сумма площадей треугольников больше площади пятиугольника.

Вниз   Решение


Петя и Вася независимо друг от друга разбивают белую клетчатую доску 100×100 на произвольные группы клеток, каждая из чётного (но не обязательно все из одинакового) числа клеток, каждый  – на свой набор групп. Верно ли, что после этого всегда можно покрасить по половине клеток в каждой группе из разбиения Пети в чёрный цвет так, чтобы в каждой группе из разбиения Васи было поровну чёрных и белых клеток?

ВверхВниз   Решение


Вписанная окружность прямоугольного треугольника АВС (угол С – прямой) касается сторон АВ, ВС и СА в точках С1, А1, В1 соответственно. Высоты треугольника А1В1С1 пересекаются в точке D. Найдите расстояние между точками C и D, если длины катетов треугольника АВС равны 3 и 4.

ВверхВниз   Решение


Медианы треугольника равны 5, 6 и 5. Найдите площадь треугольника.

ВверхВниз   Решение


В треугольнике ABC проведена высота AH. Точки Ib и Ic – центры вписанных окружностей треугольников ABH и CAH; L – точка касания вписанной окружности треугольника ABC со стороной BC. Найдите угол LIbIc.

ВверхВниз   Решение


Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?

ВверхВниз   Решение


Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении  2 : 1,  считая от вершины.

ВверхВниз   Решение


На Солнечном острове живет 20 белых и 25 чёрных хамелеонов (хамелеоны – это животные, умеющие менять свой цвет). При встрече оба хамелеона меняют свой цвет на противоположный. Могут ли все хамелеоны окраситься в один цвет?

ВверхВниз   Решение


Внутри остроугольного неравнобедренного треугольника ABC отмечена точка T, такая что ATB=BTC=120. Окружность с центром E проходит через середины сторон треугольника ABC. Оказалось, что точки B,T,E лежат на одной прямой. Найдите угол ABC.

ВверхВниз   Решение


Существует ли правильный многоугольник, длина одной диагонали которого равна сумме длин двух других диагоналей?

ВверхВниз   Решение


Три купчихи — Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна — сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоем 11 чашек, Поликсена Уваровна и Олимпиада Карповна — 15, а Сосипатра Титовна и Поликсена Уваровна — 14. Сколько чашек чая выпили все три купчихи вместе?

ВверхВниз   Решение


Из двух точек прямой проведены по две касательные к окружности. В образованные углы с вершинами в этих точках вписаны окружности равного радиуса. Докажите, что их линия центров параллельна данной прямой.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 225]      



Задача 111619

Темы:   [ Гомотетия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а сторону BC – в точке M. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

Прислать комментарий     Решение

Задача 55453

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 4
Классы: 8,9

Из двух точек прямой проведены по две касательные к окружности. В образованные углы с вершинами в этих точках вписаны окружности равного радиуса. Докажите, что их линия центров параллельна данной прямой.

Прислать комментарий     Решение


Задача 55782

Темы:   [ Гомотетия помогает решить задачу ]
[ Описанные четырехугольники ]
[ Общая касательная к двум окружностям ]
[ Центр масс ]
Сложность: 4
Классы: 8,9

Автор: Купцов Л.

На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём  r1 > r2  и   r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус.

Прислать комментарий     Решение

Задача 64803

Темы:   [ Гомотетия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ ГМТ - прямая или отрезок ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10

Автор: Tran Quang Hung

Пусть M – середина хорды AB окружности с центром O. Точка K симметрична M относительно O, P – произвольная точка окружности. Перпендикуляр к AB в точке A и перпендикуляр к PK в точке P пересекаются в точке Q. Точка H – проекция P на AB. Докажите, что прямая QB делит отрезок PH пополам.

Прислать комментарий     Решение

Задача 66971

Темы:   [ Гомотетия помогает решить задачу ]
[ Точка Торричелли ]
Сложность: 4
Классы: 8,9,10

Внутри остроугольного неравнобедренного треугольника ABC отмечена точка T, такая что ATB=BTC=120. Окружность с центром E проходит через середины сторон треугольника ABC. Оказалось, что точки B,T,E лежат на одной прямой. Найдите угол ABC.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 225]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .