ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из двух точек прямой проведены по две касательные к окружности. В образованные углы с вершинами в этих точках вписаны окружности равного радиуса. Докажите, что их линия центров параллельна данной прямой.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 222]      



Задача 111619

Темы:   [ Гомотетия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а сторону BC – в точке M. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

Прислать комментарий     Решение

Задача 55453

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 4
Классы: 8,9

Из двух точек прямой проведены по две касательные к окружности. В образованные углы с вершинами в этих точках вписаны окружности равного радиуса. Докажите, что их линия центров параллельна данной прямой.

Прислать комментарий     Решение


Задача 55782

Темы:   [ Гомотетия помогает решить задачу ]
[ Описанные четырехугольники ]
[ Общая касательная к двум окружностям ]
[ Центр масс ]
Сложность: 4
Классы: 8,9

Автор: Купцов Л.

На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём  r1 > r2  и   r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус.

Прислать комментарий     Решение

Задача 64803

Темы:   [ Гомотетия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ ГМТ - прямая или отрезок ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10

Автор: Tran Quang Hung

Пусть M – середина хорды AB окружности с центром O. Точка K симметрична M относительно O, P – произвольная точка окружности. Перпендикуляр к AB в точке A и перпендикуляр к PK в точке P пересекаются в точке Q. Точка H – проекция P на AB. Докажите, что прямая QB делит отрезок PH пополам.

Прислать комментарий     Решение

Задача 66971

Темы:   [ Гомотетия помогает решить задачу ]
[ Точка Торричелли ]
Сложность: 4
Классы: 8,9,10

Внутри остроугольного неравнобедренного треугольника $ABC$ отмечена точка $T$, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром $E$ проходит через середины сторон треугольника $ABC$. Оказалось, что точки $B,T,E$ лежат на одной прямой. Найдите угол $ABC$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .