ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из двух точек прямой проведены по две касательные к окружности. В образованные углы с вершинами в этих точках вписаны окружности равного радиуса. Докажите, что их линия центров параллельна данной прямой. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 222]
Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а сторону BC – в точке M. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.
Из двух точек прямой проведены по две касательные к окружности. В образованные углы с вершинами в этих точках вписаны окружности равного радиуса. Докажите, что их линия центров параллельна данной прямой.
На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём r1 > r2 и r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус.
Пусть M – середина хорды AB окружности с центром O. Точка K симметрична M относительно O, P – произвольная точка окружности. Перпендикуляр к AB в точке A и перпендикуляр к PK в точке P пересекаются в точке Q. Точка H – проекция P на AB. Докажите, что прямая QB делит отрезок PH пополам.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 222] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|