ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья В. Уроева "Инверсия" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точка C расположена на отрезке AB . По одну сторону от прямой AB на отрезках AB , AC и BC построены как на диаметрах полуокружности S , S1 и S2 . Через точку C проведена прямая CD , перпендикулярная AB ( D — точка на полуокружности S ). Окружность K1 касается отрезка CD и полуокружностей S и S1 , а окружность K2 — отрезка CD и полуокружностей S и S2 . Докажите, что окружности K1 и K2 равны. Решение |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 107]
Пусть O – одна из точек пересечения окружностей ω1 и ω2. Окружность ω с центром O пересекает ω1 в точках A и B, а ω2 – в точках C и D. Пусть X – точка пересечения прямых AC и BD. Докажите, что все такие точки X лежат на одной прямой.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 107] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|