ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Через точки A и B проведены окружности S1 и S2,
касающиеся окружности S, и окружность S3, перпендикулярная S.
Докажите, что S3 образует равные углы с окружностями S1 и S2.
Окружность SA проходит через точки A и C; окружность
SB проходит через точки B и C; центры обеих окружностей
лежат на прямой AB. Окружность S касается окружностей SA
и SB, а кроме того, она касается отрезка AB в точке C1.
Докажите, что CC1 — биссектриса треугольника ABC.
Дан правильный шестиугольник ABCDEF. Известно, что
Данной окружности касаются две равных меньших окружностей — одна изнутри, другая извне, причём дуга между точками касания содержит 60o. Радиусы меньших окружностей равны r, радиус большей окружности равен R. Найдите расстояние между центрами меньших окружностей.
Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника. Четырехугольник ABCD вписан в окружность с центром O. Точка X такова, что
У края биллиарда, имеющего форму правильного 2n-угольника, стоит шар. Как надо пустить шар от борта, чтобы он, отразившись последовательно от всех бортов, вернулся в ту же точку? (При отражении углы падения и отражения равны.) Доказать, что при этом длина пути шара не зависит от выбора начальной точки.
Окружность касается двух параллельных прямых l и m в точках A и B соответственно; CD — диаметр окружности, параллельный этим прямым. Прямая BC пересекает прямую l в точке E, а прямая ED — прямую m в точке F. Найдите углы треугольника BEF.
|
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 330]
Окружность касается двух параллельных прямых l и m в точках A и B соответственно; CD — диаметр окружности, параллельный этим прямым. Прямая BC пересекает прямую l в точке E, а прямая ED — прямую m в точке F. Найдите углы треугольника BEF.
В прямоугольном треугольнике ABC с катетами AB = 3 и BC = 4 через середины сторон AB и AC проведена окружность, касающаяся катета BC. Найдите длину отрезка гипотенузы AC, который лежит внутри этой окружности.
Докажите, что медианы треугольника пересекаются в одной точке и делятся ею в отношении 2:1, считая от вершины треугольника.
Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите модуль разности отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по одну сторону от общей хорды AB.
Постройте треугольник по высоте и медиане, проведённым из одной вершины, и высоте, проведённой из другой вершины.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке