Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB,  O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что
FC = b,  OC = 3b/2.  Найдите площадь треугольника ABC.

Вниз   Решение


На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать?

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AD и BE. Найдите величину угла C, если известно, что  AD . BC = BE . AC и AC$ \ne$BC.

ВверхВниз   Решение


Пусть p – простое число и представление числа n в p-ичной системе имеет вид:   n = akpk + ak–1pk–1 + ... + a1p1 + a0.
Найдите формулу, выражающую показатель αp, с которым это число p входит в каноническое разложение n!, через n, p, и коэффициенты ak.

ВверхВниз   Решение


На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу?

ВверхВниз   Решение


В остроугольном треугольнике ABC на высоте AD взята точка M, а на высоте BP – точка N так, что углы BMC и ANC – прямые. Расстояние между точками M и N равно  4 + 2,  угол MCN равен 30°. Найдите биссектрису CL треугольника CMN.

ВверхВниз   Решение


Даны отрезки a и b. С помощью циркуля и линейки постройте отрезок $ \sqrt{ab}$.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.

ВверхВниз   Решение


В трапеции ABCD точки K и M являются соответственно серединами оснований AB = 5 и CD = 3. Найдите площадь трапеции, если треугольник AMB — прямоугольный, а DK — высота трапеции.

ВверхВниз   Решение


Высота CD треугольника ABC делит сторону AB на отрезки AD и BD, причём AD . BD = CD2. Верно ли, что треугольник ABC прямоугольный?

ВверхВниз   Решение


В прямоугольный треугольник вписан квадрат так, что одна из его сторон находится на гипотенузе. Боковые отрезки гипотенузы равны m и n. Найдите площадь квадрата.

ВверхВниз   Решение


Доказать, что если целое  n > 1,  то  11·2²·3³·...·nn < nn(n+1)/2.

ВверхВниз   Решение


На отрезке AC взята точка B. На AB и AC как на диаметрах построены окружности. К отрезку AC в точке B проведён перпендикуляр BD до пересечения с большей окружностью в точке D. Из точки C проведена касательная CK к меньшей окружности. Докажите, что CD = CK.

ВверхВниз   Решение


Может ли некоторое сечение куба быть правильным пятиугольником?

ВверхВниз   Решение


Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)

ВверхВниз   Решение


Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное (среднее геометрическое) проекций катетов на гипотенузу, а каждый катет есть среднее пропорциональное гипотенузы и своей проекции на неё.

ВверхВниз   Решение


Даны числа: 4, 14, 24, ..., 94, 104. Докажите, что из них нельзя вычеркнуть сперва одно число, затем из оставшихся ещё два, затем ещё три и, наконец, ещё четыре числа так, чтобы после каждого вычёркивания сумма оставшихся чисел делилась на 11.

ВверхВниз   Решение


Существуют ли арифметическая прогрессия, состоящая лишь из простых чисел?

ВверхВниз   Решение


Дана таблица n×n, в каждой её клетке записано число, причём все числа различны. В каждой строке отметили наименьшее число, и все отмеченные числа оказались в разных столбцах. Затем в каждом столбце отметили наименьшее число, и все отмеченные числа оказались в разных строках. Докажите, что оба раза отметили одни и те же числа.

ВверхВниз   Решение


Может ли сумма  1 + 2 + 3 + ... + (n – 1) + n  при каком-нибудь натуральном n оканчиваться цифрой 7?

ВверхВниз   Решение


Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если  AB = c,  AM = m  и  AN = n.

ВверхВниз   Решение


Окружность радиуса 2 касается внешним образом другой окружности в точке A. Общая касательная к обеим окружностям, проведённая через точку A, пересекается с другой их общей касательной в точке B. Найдите радиус второй окружности, если AB = 4.

ВверхВниз   Решение


Автор: Насыров З.

Круг поделили хордой AB на два круговых сегмента и один из них повернули на некоторый угол вокруг точки A. При этом повороте точка B перешла в точку D (см. рис.).

Докажите, что отрезки, соединяющие середины дуг сегментов с серединой отрезка BD, перпендикулярны друг другу.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 159]      



Задача 54455

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Медиана, проведенная к гипотенузе ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB,  O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что
FC = b,  OC = 3b/2.  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Задача 54457

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC сторона AB равна стороне BC. Пусть D – основание перпендикуляра, опущенного из B на сторону AC,  E – точка пересечения биссектрисы угла A со стороной BC. Через точку E проведён перпендикуляр к AE до пересечения с продолжением стороны AC в точке F (C между F и D). Известно, что  AD = m,  FC = m/4.  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Задача 116680

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Поворотная гомотетия (прочее) ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Автор: Рудаков И.

На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой.

Прислать комментарий     Решение

Задача 54295

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В трапеции ABCD точки K и M являются соответственно серединами оснований AB = 5 и CD = 3. Найдите площадь трапеции, если треугольник AMB — прямоугольный, а DK — высота трапеции.

Прислать комментарий     Решение


Задача 55754

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Композиции поворотов ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

Автор: Насыров З.

Круг поделили хордой AB на два круговых сегмента и один из них повернули на некоторый угол вокруг точки A. При этом повороте точка B перешла в точку D (см. рис.).

Докажите, что отрезки, соединяющие середины дуг сегментов с серединой отрезка BD, перпендикулярны друг другу.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .