ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

С помощью циркуля и линейки впишите в данный треугольник другой треугольник, стороны которого соответственно параллельны трём данным прямым.

   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 484]      



Задача 54649

Темы:   [ Построения одним циркулем ]
[ Признаки подобия ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Инверсия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Пользуясь только циркулем, разделите пополам данный отрезок, то есть постройте для данных точек A и B такую точку C, что точки A, B, C лежат на одной прямой и  AC = BC.

Прислать комментарий     Решение

Задача 55588

Темы:   [ Построение треугольников по различным точкам ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по данным серединам двух его сторон и прямой, на которой лежит биссектриса, проведённая к третьей стороне.

Прислать комментарий     Решение


Задача 55638

Темы:   [ Построение треугольников по различным элементам ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Постройте треугольник ABC по углам A и B и разности сторон AC и BC.

Прислать комментарий     Решение


Задача 55769

Темы:   [ Построения ]
[ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки впишите в треугольник две равные окружности, каждая из которых касается двух сторон треугольника и другой окружности.

Прислать комментарий     Решение


Задача 55779

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки впишите в данный треугольник другой треугольник, стороны которого соответственно параллельны трём данным прямым.

Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .