ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На хорде AB окружности S с центром O взята точка C. Описанная окружность треугольника AOC пересекает окружность S в точке D.
Докажите, что  BC = CD.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 499]      



Задача 55412

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9

Диагонали четырёхугольника ABCD, вписанного в окружность, пересекаются в точке E. На прямой AC взята точка M, причём  ∠BME = 70°,  ∠ADB = 50°,
CDB = 60°.  Где расположена точка M: на диагонали AC или на её продолжении?

Прислать комментарий     Решение

Задача 55413

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Диагонали четырёхугольника ABCD, вписанного в окружность, пересекаются в точке E. На прямой AC взята точка M, причём  ∠DME = 80°,  ∠ABD = 60°,
CBD = 70°. Где расположена точка M: на диагонали AC или на её продолжении?

Прислать комментарий     Решение

Задача 55414

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Диагонали четырёхугольника PQRS, вписанного в окружность, пересекаются в точке D. На прямой PR взята точка A, причём  ∠SAD = 50°,  ∠PQS = 70°,
RQS = 60°.  Где расположена точка A: на диагонали PR или на её продолжении?

Прислать комментарий     Решение

Задача 56576

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

На хорде AB окружности S с центром O взята точка C. Описанная окружность треугольника AOC пересекает окружность S в точке D.
Докажите, что  BC = CD.

Прислать комментарий     Решение

Задача 65821

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь треугольника (через высоту и основание) ]
[ Отношения площадей (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .