ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан треугольник ABC. На его стороне AB выбирается точка P и через нее проводятся прямые PM и PN, параллельные AC и BC соответственно (точки M и N лежат на сторонах BC и AC); Q — точка пересечения описанных окружностей треугольников APN и BPM. Докажите, что все прямые PQ проходят через фиксированную точку.

   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 9702]      



Задача 56601

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

а) Стороны угла с вершиной C касаются окружности в точках A и B. Из точки P, лежащей на окружности, опущены перпендикуляры PA1, PB1 и PC1 на прямые BC, CA и AB. Докажите, что  PC12 = PA1 . PB1 и PA1 : PB1 = PB2 : PA2.
б) Из произвольной точки O вписанной окружности треугольника ABC опущены перпендикуляры  OA', OB', OC' на стороны треугольника ABC и перпендикуляры  OA'', OB'', OC'' на стороны треугольника с вершинами в точках касания. Докажите, что  OA' . OB' . OC' = OA'' . OB'' . OC''.
Прислать комментарий     Решение


Задача 56609

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Известно, что в некотором треугольнике медиана, биссектриса и высота, проведенные из вершины C, делят угол на четыре равные части. Найдите углы этого треугольника.
Прислать комментарий     Решение


Задача 56610

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Докажите, что в любом треугольнике ABC биссектриса AE лежит между медианой AM и высотой AH.
Прислать комментарий     Решение


Задача 56611

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. На его стороне AB выбирается точка P и через нее проводятся прямые PM и PN, параллельные AC и BC соответственно (точки M и N лежат на сторонах BC и AC); Q — точка пересечения описанных окружностей треугольников APN и BPM. Докажите, что все прямые PQ проходят через фиксированную точку.
Прислать комментарий     Решение


Задача 56613

Тема:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Докажите, что ломаная AOC делит ABCD на две фигуры равной площади.
Прислать комментарий     Решение


Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .