ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами. Решение |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 769]
В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами.
Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус описанной окружности треугольника со сторонами равен где p – полупериметр треугольника ABC.
Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность
S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность
S3
Дан неравнобедренный треугольник $ABC$. Выберем произвольную окружность ω, касающуюся описанной окружности Ω треугольника $ABC$ внутренним образом в точке $B$ и не пересекающую прямую $AC$. Отметим на ω точки $P$ и $Q$ так, чтобы прямые $AP$ и $CQ$ касались ω, а отрезки $AP$ и $CQ$ пересекались внутри треугольника $ABC$. Докажите, что все полученные таким образом прямые $PQ$ проходят через одну фиксированную точку, не зависящую от выбора окружности ω.
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|