ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что
С помощью циркуля и линейки постройте четырёхугольник по диагоналям, углу между ними и двум каким-нибудь сторонам.
Угол, изготовленный из прозрачного материала,
двигают так, что две непересекающиеся окружности касаются
его сторон внутренним образом. Докажите, что на нем
можно отметить точку, которая описывает дугу окружности.
На сторонах BC, CA и AB треугольника ABC
взяты точки A1, B1 и C1 так, что отрезки AA1, BB1 и CC1
пересекаются в одной точке. Прямые A1B1 и A1C1 пересекают
прямую, проходящую через вершину A параллельно стороне BC, в
точках C2 и B2 соответственно. Докажите, что AB2 = AC2.
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 181]
Прямые AP, BP и CP пересекают стороны
треугольника ABC (или их продолжения) в точках A1, B1 и C1.
Докажите, что:
На сторонах BC, CA и AB треугольника ABC
взяты точки A1, B1 и C1 так, что отрезки AA1, BB1 и CC1
пересекаются в одной точке. Прямые A1B1 и A1C1 пересекают
прямую, проходящую через вершину A параллельно стороне BC, в
точках C2 и B2 соответственно. Докажите, что AB2 = AC2.
а) Пусть
Стороны BC, CA и AB треугольника ABC касаются
окружности с центром O в точках A1, B1 и C1. На
лучах OA1, OB1 и OC1 отложены равные отрезки OA2, OB2
и OC2. Докажите, что прямые AA2, BB2 и CC2 пересекаются в
одной точке.
Прямые AP, BP и CP пересекают прямые BC, CA
и AB в точках A1, B1 и C1 соответственно. Точки A2, B2
и C2 выбраны на прямых BC, CA и AB так, что
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 181]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке